INFLUENCE OF THERMAL RESISTANCE OF
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Heat transfer to a solid wall during condensation of a vapor from a vapor—gas mixture in
drops is discussed. '

In general, the rate of vapor condensation from a vapor —gas mixture is governed by the conditions
under which the vapor is transported to the interface and by heat transfer through the liquid phase which
forms on the solid surface.

The thermal resistance of the drops during condensation of vapor in drops on a surface is usually
neglected [1-3], but, as we show below, under certain conditions this thermal resistance of the condensate
drops can significantly affect the rate of heat and mass transfer.

Examining the theoretical papers on the influence of the thermal resistance of condensate drops on
heat transfer to a wall, we find an analysis [4] of the simple case corresponding to growth of a hemispheri-
cal drop on a wall, Usually, on the other hand, the drops which form on metal surfaces have wetting
angles less than 90°, so that the results of {4] are not of general applicability.

Let us examine the process of heat transfer through a single growing liquid drop. If we neglect the
thermocapillary and gravitational convection and if we neglect the mixing of the liquid in the drop as a re-
sult of its growth, we can describe the temperature in the drop by the Fourier equation, which becomes,
in toroidal coordinates,
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Toroidal coordinates are convenient in this case of drop growth, in which the interfaces correspond to
fixed surfaces 3 =0, p = B, (Fig. 1). The time derivatives in the fixed (3/0t) and moving (3'/0t) coordi-
nate systems are related by /8t = 8'/8t + @8/0a + 806/83, where o = da (P)/3t, B =8 p5(P)/dt, corre-
sponding to a fixed point P, which can be specified by means of the cylindrical coordinates R, z (Fig. 1):
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Accordingly, & and 3 are determined from the system of equations dR/dt = 0, dz/dt = 0, and are
@ = fi, B) R/Rm p= fale, B) Ro/Ro-
Since Ry = R,(t), we have 8'/9t = R9/8Ry, and Eq. (1) can be written in the following form in the coordinate
system tied to the growing drop:
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Fig. 1. Célculation model.
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As the boundary conditions we assume that the wall temperature is constant,

T=Ty= const for B =0, 3
and that the heat-transfer coefficient ¢y and the mass—transfer coefficient o, for convective transfer at
the liquid —gas interface are constant.
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At small relative temperature drops at the drop surface [(T — Ty)/Ty < 1] the saturation vapor
pressure can be approximated by a linear equation:

P(T) P, —PT(T T, [P,=P(T,), p}:ap(T)an

We begin the solutlon w1th the quasisteady approximation, for which we set the right side of Eq. (2}
equal to zero. This approach is valid for a broad range of condensation conditions. We will later see
how the temperature field in the drop is affected by the deviation from steady-state conditions.

The exacf solution of the corresponding steady-state problem is
T =T, + }Vcha = cos'ﬁ—j A(x) sh(Bt) P_jpoqir (cha) dr. (5)
S i

The function A (r) must be determined from boundary condition (4), but this approach involves the
solution of an extremely complicated integral equation, Accordingly, for small wetting angles 3, we use
the asymptotic "narrow~band" method, introducing the constant coordinate v = 3/8, and rewntmg the
quasisteady problem as

2T s i 1 a (’26T )+cha+1 ¢ y
o 2 cha-+1 dy dy sha liled
o
« sha 67‘) +ﬁ4{1 1 2_i 1. Jx
cha +1 o . . (cha +-1) 6 cha-+1.
0 (WO \, 1 chasl i[_sh.“_ Tl =0 ©)
oy dy 2 shu (cha + 1)* oo | .
for vy =0, T =Ty;
4 A r
= (chcc+l ﬁ2 + 54 ..,)_—%E—zalﬁo(Tw—T)+a2rﬁo [Po — Pp— Pr (T —Ty)] (7)
for vy =1.
We seek a solution as an expansion in the small parameter B:
T=Tw+70+ﬁ372+ﬁ374+ (8)
For Ty, Ty, and T, we find
T
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Here B = 3,Ry/A)ay +ayrPr) and ¢ = 8,(R/M) (AT + ayrAP).
¥or definiteness we have assumed that the effective exterhal thermal resistance (ag + ozerr'r)" is
comparable to the thermal resistance of the drop, i.e., that B is onthe order of unity.

Accordingly, »
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The heat flux from the drop to the wall can be calculated from

00

(y =0). (11)
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Since hy =h 3 we have R = Rysha/(cha + cos 3) (Fig. 1). Substituting (8) into (11), we find the asymp-
totic behavior o el
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Using (10), we find
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The heat flux to the planar surface covered by a drop of radius R is
Qp= 7RG (AT - oy Py AP) = “—C;R—O .
0
so that we have the ratio
! g, (B) = Bg, (B
Q _ 5 9B -Ban(B) (13)

@ B
Calculations show that as B increases the ratio Q'/Qp decreases, falling below one at B > 0.4. Ac-~
cordingly, the thermal resistance of the condensate drop can affect the heat transfer to the wall only if B
>0.4. If B <04, the ratio Q'/Qp becomes larger than one, so that heat and mass transfer can be intensi-
fied. ' ’

Results calculated from Eq. (13) are shown in Fig. 2. Curve 1, plotted on the basis of two terms
for 8, = v/4, differs only slightly from curve 2, corresponding to the ideal case 34— 0, i.e,, from the
result calculated on the basis of the first term in the asymptotic expansion. Obviously, then, for wetting
angles B, < /4 it is sufficiently accurate for practical purposes to calculate the heat fluxes on the basis
of the first iteration alone, in the sense of the ™arrow-band" asymptotic behavior.

. The part of the heat flux due to vapor condensation is
Q” — QV _ QVI .
where

Q' = 23‘6,052pr g‘ Rhgda; Q' = 2na,r Pr s (T —T,) Rh,do.
b ' )
However, the heat flux Q' found above can be written

Q' = QM —QY, Q' = 2 (&, AT + a,rAP) S‘Rhada,

§
QY = 2n (@, + oy Pr) 5 (T —T,) Rhdo.
We thus have ¢
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Fig. 2. The ratio Q'/Qp and the equilibrium ratio of the
temperature and pressure drops AT and AP as functions
of the dimensionless parameter B. 1) 3, =1/4; 2) 3 — 0;
3) (@ AT)/ (@ ,rAP),
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If the drop grows as a result of condensation alone (i.e., if the drop does not merge with other drops
in the time interval under consideration, we can use the expression for the drop volume,

Qy = (RY/3 sin® B,) (1 — cos By)? (2 -+ cosfiy),
to find

dR, _ Q’sin’B, , (15)
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Accordingly, the drop stops growing when the parameter B corresponding to its base radius R, becomes
equal to the root B« of the function Q"/R3. This value of the radius and that of the corresponding value of
the parameter B can be called the equilibrium values, since a drop having reached this size is in dynamic
equilibrium with the moist gas moving around it (dRy/dt = 0) (we are not considering the mechanical equilib-
rium of the drop on a wall in a gas flow). In other words, the rate of evaporation from the central part of
the drop surface becomes equal to the rate of condensation at the peripheral part.

Instead of determining B« through a solution of the complicated transcendental equation we can find
the ratio PTAT/AP at which the given value of B becomes the equilibrium value:
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Since we have ozerlr - 1in cases of practical interest, we find a ratio PerT/AP > 1, Ina first approxi-

mation we can write
P’T AT _ OLQI'P;" ln(l +B/r2) . (16)
AP T g, Bi2 —In(1 =+ B/2)

Curve 3 in Fig. 2 is plotted from this equation,
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It was shown above that in the range of wetting angles 3, of interest here it is sufficient to use the
first iteration of the "narrow-band" asymptotic approach to solve the quasisteady equation. Accordingly,
we also use this iteration to examine the relaxation of the temperature field in the drop due to the finite
specific heat of the liquid. In the limit 3, — 0 we have f; = —sha and fy = —g,yche, and Eq. (2) canbe
approximated by
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Under the assumption that the change in the enthalpy in the drop is due primarily to the change in the
enthalpy in the liquid in the course of the phase transition, we seek the temperature field in a drop of
radius R,, and we seek the heat flux Q', as the expansions
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where T;, Ry, and Qg correspond to the quasisteady approximation. In the limit 8y — 0 we find from (12)-
(15)
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where A = a4/ (@,rPT) and 6 = PTAT/AP.
Choosing the quantity € = (a3 3APRy)/ (3ca) as a small parameter and using Eq. {9) for T we find

Ty BCycha (19)
oy? she (che — 1) (che -~ 1 — By _

The component Ty must satisfy the boundary conditions
aT, B

T,=0 for y=0, - T,=0 for »=1.
! T ¥ ay che -1 * ) ¥
We thus find »
BC cha 3
T, = o, (@) y— R A
P Y e D e 1B 6
V() = — 2heBlhe - =5
6sho (cho -~ 1) (cha— 1+~ B)3
Q= ZRte S"._\h_(a)sha_di;
ﬁo . cha =1
0
B—2 B—1 2B—3
Je= 22 g J, - 2BJ) — = :
;. 68 U 3 9gr
Jj=§ do P
) ; (cha =- 1 - By
_ 1 nV2tB+VE . (1+B)J—1
1 B o DB D — 2= T,
I/B(2—;—B)‘ V2+B—-VB B@2+B
I 2004 BP4+11J,—3(1 -+ B)
3 9B (2 = B)*

In a determination of the steady-state temperature field, Ivanov [5] assumed that the isothermal sur-
faces are a family of spheres passing through the drop contour. That this assumption is incorrect can be,
seen by writing the problem in a toroidal coordinate system, i.e., by using Eq. (4) without its right side.
This assumption is equivalent to the assumption T = &(B). Substituting the function T = @B into the
steady-state equation corresponding to Eq. (1) we find that it can be solved only in the trivial case @(B)
= const. The function T = &(B) can be thought of as the first iteration of the "narrow-band" asymptotic
approach for small wetting angles 3, and for boundary conditions of the first kind. However, the solution
of the problem formulated in this manner, which corresponds to the limit B — =, ¢/B = AT < =, examined
above, cannot be used to determine the heat fluxes or the drop-growth rate, since in this formulation we
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would find Q' = « [the function Q' (B) has a logarithmic Singularity at the point B = »], The solution given
in [5] does not satisfy the boundary conditions formulated there.

NOTATION

are the thermal conductivity, thermal diffusivity, and density, respectively, of the
liquid phase; . :

are the convective heat—- and mass-transfer coefficients;

is the latent heat of vaporization;

is the radius of the drop base;

are the toroidal coordinates tied to the growing drop;

are the Lamé coefficients;

is the time;

is the wetting angle;

is the wall temperature;

is the temperature of the vapor — gas mixture far from the wall;

is the vapor pressure far from the wall;

is the saturation vapor pressure at temperature T;

is the heat flux from the drop to the wall;

is the heat flux to the plane surface covered by a drop of radius Ry;

AT = Too. — TW; AP = P — PW; PW = P(Tw).
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